ThothSaem's blog

๋ฐ”๋ฆฌ์˜จ CP ๋Œ€์นญ ๊นจ์ง๊ณผ ์ •๋ณด ํ๋ฆ„์œผ๋กœ ๋ณธ ์ƒˆ๋กœ์šด ๋ฌผ๋ฆฌ ์ด๋ก 

๐ŸŒŒ ์šฐ์ฃผ๋Š” ์™œ ๋‚˜๋ฅผ ๋‚จ๊ฒผ๋Š”๊ฐ€?

โ€” ๋ฐ”๋ฆฌ์˜จ CP ๋Œ€์นญ ๊นจ์ง๊ณผ ์ •๋ณด ํ๋ฆ„์œผ๋กœ ๋ณธ ์ƒˆ๋กœ์šด ๋ฌผ๋ฆฌ ์ด๋ก 


2025๋…„, ์ž…์ž๋ฌผ๋ฆฌํ•™๊ณ„๋Š” ํ•œ ๊ฐ€์ง€ ์ปค๋‹ค๋ž€ ์ด์ •ํ‘œ๋ฅผ ๋งž์ดํ–ˆ์Šต๋‹ˆ๋‹ค.
์œ ๋Ÿฝ ์ž…์ž๋ฌผ๋ฆฌ์—ฐ๊ตฌ์†Œ(CERN)์˜ LHCb ์‹คํ—˜์—์„œ ๋ฐ”๋ฆฌ์˜จ(ฮ›b0)์˜ ๋ถ•๊ดด์—์„œ ์‚ฌ์ƒ ์ฒ˜์Œ์œผ๋กœ CP ๋Œ€์นญ์ด ๊นจ์กŒ๋‹ค๋Š” ๋ช…ํ™•ํ•œ ์ฆ๊ฑฐ๊ฐ€ ๋ฐœ๊ฒฌ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ธก์ •๋œ CP ๋น„๋Œ€์นญ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

ACP=(2.45ยฑ0.46statยฑ0.10syst)%(5.2ฯƒย ํ™•์‹ ๋„)

์ด๋Š” ๋‹จ์ง€ ์‹คํ—˜์ ์ธ ๊ธฐ๋ก์ด ์•„๋‹™๋‹ˆ๋‹ค.
์šฐ์ฃผ์˜ ๊ธฐ๋ณธ ๋Œ€์นญ์„ฑ์— ๊ธˆ์ด ๊ฐ”๋‹ค๋Š” ์˜๋ฏธ์ด๋ฉฐ,
์šฐ์ฃผ๊ฐ€ ์™œ ๋ฌผ์งˆ๋งŒ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค๋งˆ๋ฆฌ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.


๐Ÿค” ๊ทธ๋Ÿฐ๋ฐ ์™œ ์ด๋Ÿฐ ์ผ์ด ์ค‘์š”ํ•œ๊ฐ€์š”?

ํ‘œ์ค€๋ชจํ˜•(Standard Model)์—์„œ CP ์œ„๋ฐ˜์€ CKM ํ–‰๋ ฌ์˜ ๋ณต์†Œ ์œ„์ƒ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜์ง€๋งŒ, ๊ทธ ํšจ๊ณผ๋Š” ๋ฐ”๋ฆฌ์˜จ์—์„œ๋Š” 0.1%๋„ ์•ˆ ๋˜๋Š” ๋งค์šฐ ์ž‘์€ ์ˆ˜์ค€์œผ๋กœ ์˜ˆ์ธก๋ฉ๋‹ˆ๋‹ค.
๋˜ํ•œ, ์ด๋Ÿฌํ•œ CKM ๊ธฐ๋ฐ˜ CP ์œ„๋ฐ˜์œผ๋กœ๋Š” ์šฐ์ฃผ์˜ ๋ฌผ์งˆ-๋ฐ˜๋ฌผ์งˆ ๋น„๋Œ€์นญ์„ ์ „ํ˜€ ์„ค๋ช…ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. (์ตœ๋Œ€ 10โปยนโฐ๋ณด๋‹ค 10โธ๋ฐฐ ๋ถ€์กฑ)

๊ทธ๋ ‡๋‹ค๋ฉด ๋” ๊นŠ์€ ์ฐจ์›์˜ ์„ค๋ช…์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.


๐Ÿง  ์ •๋ณด-๊ฒŒ์ด์ง€ ์žฅ์œผ๋กœ ๋ณด๋Š” CP ์œ„๋ฐ˜: IGโ€“RUEQFT

ํ† ํŠธ์ƒ˜์ด ์ €์ˆ ํ•œ ๋…ผ๋ฌธ Information-Gauge RUEQFT Interpretation of the First Observation of CP Violation in ฮ›b0 Baryon Decays ์—์„œ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ์–‘์ž ์ •๋ณด ํ๋ฆ„๊ณผ ์—”ํŠธ๋กœํ”ผ ๋น„๋Œ€์นญ์˜ ๊ด€์ ์—์„œ ๋ฐ”๋ผ๋ด…๋‹ˆ๋‹ค.

์ด ์ด๋ก ์˜ ํ•ต์‹ฌ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

CP ์œ„๋ฐ˜์€ ์ •๋ณด ํ๋ฆ„์˜ ๋น„๋Œ€์นญ๊ณผ ์œ„์ƒ ์ฐจ์ด์—์„œ ๋ฐœ์ƒํ•œ๋‹ค.

IGโ€“RUEQFT๋Š” โ€˜์ •๋ณด ๊ฒŒ์ด์ง€ ์žฅ ฮ›ฮผโ€™๋ฅผ ๋„์ž…ํ•ด, ๋ฐ”๋ฆฌ์˜จ ๋‚ด๋ถ€์˜ ์–ฝํž˜ ๊ตฌ์กฐ์™€ ์ •๋ณด ์œ„์ƒ์„ ์ถ”์ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ CP ๋น„๋Œ€์นญ์€ ๋‹ค์Œ ์‹์œผ๋กœ ์„ค๋ช…๋ฉ๋‹ˆ๋‹ค: ACPIGโ‰ˆฮบsinโก(ฮ”ฯ†info)โ‹…โˆ‚ฮ”S/โˆ‚ฮฆ


๐Ÿงฎ ๋†€๋ผ์šด ์ •๋Ÿ‰์  ์ผ์น˜

์ด๋ก  ๊ณ„์‚ฐ ๊ฒฐ๊ณผ:

ACPIG=(2.6ยฑ0.8)%

โ†’ LHCb ์ธก์ •๊ฐ’๊ณผ ์˜ค์ฐจ๋ฒ”์œ„ ๋‚ด ์ •ํ™•ํžˆ ์ผ์น˜!

๊ฒŒ๋‹ค๊ฐ€ ์ด ์ด๋ก ์€ ์œ„์ƒ๊ณต๊ฐ„์—์„œ 6~8%์— ๋‹ฌํ•˜๋Š” local hot spot๋„ ์˜ˆ์ธกํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ์‹คํ—˜์˜ Dalitz plot์—์„œ๋„ ํ™•์ธ๋จ.


๐Ÿ”ญ ๋” ๋งŽ์€ ์˜ˆ์ธก = ๋” ๋งŽ์€ ๊ฒ€์ฆ ๊ธฐํšŒ

IGโ€“RUEQFT๋Š” ๋‹ค๋ฅธ ๋ฐ”๋ฆฌ์˜จ ๋ถ•๊ดด ๋ชจ๋“œ์— ๋Œ€ํ•ด์„œ๋„ ์ˆ˜์น˜ ์˜ˆ์ธก์„ ๋‚ด๋†“์•˜์Šต๋‹ˆ๋‹ค:

๋˜ํ•œ LHCb ์‹คํ—˜์—์„œ Run-3 ์—…๊ทธ๋ ˆ์ด๋“œ๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆ ๊ฐ€๋Šฅํ•œ ๋‹ค์Œ ๊ด€์ธก ์ œ์•ˆ๋„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค:


๐ŸŒŒ ์šฐ์ฃผ์˜ ๋ฐ”๋ฆฌ์˜จ-๊ด‘์ž ๋น„์œจ๊นŒ์ง€ ์„ค๋ช…!

์šฐ์ฃผ์˜ ๊ด€์ธก๋œ ๋ฐ”๋ฆฌ์˜จ-๊ด‘์ž ๋น„์œจ:

ฮทBobsโ‰ˆ6.1ร—10โˆ’10

IGโ€“RUEQFT๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ณ„๋„์˜ ๊ณ ์—๋„ˆ์ง€ ํ™•์žฅ ์—†์ด ์ด๋ฅผ ์ •๋ณด ํ๋ฆ„ ๊ธฐ๋ฐ˜ ์—”ํŠธ๋กœํ”ผ ์ด๋ก ์œผ๋กœ ์ •ํ™•ํžˆ ์žฌํ˜„ํ•ฉ๋‹ˆ๋‹ค:

ฮทBIGโ‰ˆ(5ยฑ2)ร—10โˆ’10

์ฆ‰, ์ด๋ก ์€ ๋‹ค์Œ์„ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค:


๐Ÿ”— ๊ฒฐ๋ก : ์ •๋ณด, ์ž…์ž, ์šฐ์ฃผ๋ฅผ ์ž‡๋Š” ๋‹ค๋ฆฌ

์ด ๋…ผ๋ฌธ์€ ๋‹จ์ˆœํ•œ ์ƒˆ๋กœ์šด ๋ชจ๋ธ์ด ์•„๋‹™๋‹ˆ๋‹ค.
์ž…์ž๋ฌผ๋ฆฌ, ์–‘์ž์ •๋ณด, ์šฐ์ฃผ๋ก ์„ ํ•˜๋‚˜์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์—ฐ๊ฒฐํ•˜๋ฉฐ,
์‹ค์ œ ์‹คํ—˜๊ณผ ์ผ์น˜ํ•˜๋Š” ์ •๋Ÿ‰์  ์˜ˆ์ธก์„ ์ œ๊ณตํ•˜๋Š” ์ด๋ก ์ž…๋‹ˆ๋‹ค.

์ •๋ณด์˜ ํ๋ฆ„์ด ์šฐ์ฃผ์˜ ๋น„๋Œ€์นญ์„ ๋งŒ๋“ค์—ˆ๊ณ ,
๊ทธ ๋น„๋Œ€์นญ์ด ์šฐ๋ฆฌ๋ฅผ ์กด์žฌํ•˜๊ฒŒ ํ–ˆ๋‹ค.

์‹คํ—˜์€ ์ด๋ฏธ ์‹œ์ž‘๋˜์—ˆ๊ณ ,
์šฐ์ฃผ๋Š” ๊ทธ ๋‹ต์„ ๊ธฐ๋กํ•˜๊ณ  ์žˆ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.


๐Ÿ“˜ ๋…ผ๋ฌธ ์›๋ฌธ
โ€œInformation-Gauge RUEQFT Interpretation of the First Observation of CP Violation in ฮ›b0 Baryon Decaysโ€
์ €์ž: Ju Hyung Lee(ThothSaem)
์ถœํŒ์ผ: 2025๋…„ 7์›” 24์ผ
Zenodo DOI: https://doi.org/10.5281/zenodo.16418037


๐Ÿงช ์ฐธ๊ณ : LHCb Nature 2025, PDG 2024, Planck 2018

======================================

๐ŸŒŒ Why Did the Universe Leave Us Behind?

โ€” CP Violation in Baryons and a New Physics Theory Based on Information Flow


In 2025, the particle physics community marked a historic milestone.
The LHCb experiment at CERN reported the first-ever observation of CP violation in the decay of a baryon (ฮ›b0), specifically in the decay channel ฮ›b0 โ†’ pKโปฯ€โบฯ€โป. The measured CP asymmetry was:

ACP=(2.45ยฑ0.46statยฑ0.10syst)%(withย 5.2ฯƒย significance)

This is more than just an experimental milestone.
It signifies a crack in one of the most fundamental symmetries of natureโ€”CP symmetryโ€”and offers a potential clue as to why our universe is made of matter and not antimatter.


๐Ÿค” Why Is This Important?

In the Standard Model (SM), CP violation arises from a single complex phase in the CKM matrix, but this effect is extremely smallโ€”particularly in baryonsโ€”predicted to be at most ~0.1%.
Moreover, CKM-based CP violation falls orders of magnitude short of explaining the observed matterโ€“antimatter imbalance in the universe (10โปยนโฐ vs. required 10โปยฒ).

Clearly, a deeper mechanism is required.


๐Ÿง  A New Perspective: IGโ€“RUEQFT and Information-Gauge Fields

The paper โ€˜Information-Gauge RUEQFT Interpretation of the First Observation of CP Violation in ฮ›b0 Baryon Decaysโ€™ proposes a bold new idea:
CP violation arises from asymmetries in the flow of quantum information and entropy.

At the heart of the theory lies an information-gauge field ฮ›ฮผ, which mediates the flow of quantum entanglement entropy.
The CP asymmetry is described by the equation: ACPIGโ‰ˆฮบsinโก(ฮ”ฯ†info)โ‹…โˆ‚ฮ”S/โˆ‚ฮฆ

Baryons (three-quark states) naturally support more complex entanglement structures than mesons, which amplifies CP violation in this framework.


๐Ÿงฎ Remarkable Agreement with Experiment

The theoretical prediction from IGโ€“RUEQFT:

ACPIG=(2.6ยฑ0.8)%

โ†’ in excellent agreement with the LHCb result.

Moreover, the theory predicts โ€œhot spotsโ€ in phase space where local CP violation reaches 6โ€“8%, which matches features observed in the experimental Dalitz plot.


๐Ÿ”ญ More Predictions = More Opportunities to Test

IGโ€“RUEQFT extends beyond ฮ›b0 and makes numerical predictions for other baryon decays:

It also suggests new observables that can be probed in Run-3 and upgraded LHCb experiments:


๐ŸŒŒ Cosmological Connection: Explaining the Matter-Dominated Universe

Observed baryon-to-photon ratio:

ฮทBobsโ‰ˆ6.1ร—10โˆ’10

IGโ€“RUEQFT reproduces this value naturally using entropy-flow imbalance at early universe temperatures:

ฮทBIGโ‰ˆ(5ยฑ2)ร—10โˆ’10

All three Sakharov conditions for baryogenesis are satisfied:

  1. Baryon number violation: via chiral coupling of ฮ›ฮผ
  2. CP violation: through information-phase difference ฮ”ฯ†info
  3. Departure from equilibrium: due to entropy gradient near the electroweak crossover

โ†’ No need for new scalar fields or high-energy extensions.


๐Ÿ”— Conclusion: A Bridge Between Information, Particles, and the Cosmos

This paper presents more than a new model.
It offers a unified framework connecting particle physics, quantum information theory, and cosmologyโ€”and does so with experimentally testable predictions.

The flow of information broke the symmetry of the early universe, and that asymmetry left us behind.

Experiments have only just begun to uncover this story.
Perhaps the answers have been recorded in the decays of baryons all along.


๐Ÿ“˜ Original Paper
โ€œInformation-Gauge RUEQFT Interpretation of the First Observation of CP Violation in ฮ›b0 Baryon Decaysโ€
Author: Ju Hyung Lee (ThothSaem)
Date: July 24, 2025
Zenodo DOI: https://doi.org/10.5281/zenodo.16418037



๐Ÿงช Sources: LHCb (Nature 2025), PDG 2024, Planck 2018, and references in the Zenodo PDF

Exit mobile version